Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 26, 2026
-
Abstract The concept of employing highly concentrated electrolytes has been widely incorporated into electrolyte design, due to their enhanced Li‐metal passivation and oxidative stability compared to their diluted counterparts. However, issues such as high viscosity and sub‐optimal wettability, compromise their suitability for commercialization. In this study, we present a highly concentrated dimethyl ether‐based electrolyte that appears as a liquid phase at ambient conditions via Li+‐ solvents ion‐dipole interactions (Coulombic condensation). Unlike conventional high salt concentration ether‐based electrolytes, it demonstrates enhanced transport properties and fluidity. The anion‐rich solvation structure also contributes to the formation of a LiF‐rich salt‐derived solid electrolyte interphase, facilitating stable Li metal cycling for over 1000 cycles at 0.5 mA cm−2, 1 mAh cm−2condition. When combined with a sulfurized polyacrylonitrile (SPAN) electrode, the electrolyte effectively reduces the polysulfide shuttling effect and ensures stable performance across a range of charging currents, up to 6 mA cm−2. This research underscores a promising strategy for developing an anion‐rich, high concentration ether electrolyte with decreased viscosity, which supports a Li metal anode with exceptional temperature durability and rapid charging capabilities.more » « lessFree, publicly-accessible full text available February 17, 2026
-
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown that a diverse family of receptors, stratified across different brain regions, and circuit-specific afferent and efferent projections play a critical role in helping such widespread neuromodulatory systems obtain substantial heterogeneity in neural information processing. This review briefly discusses the anatomical layout of both the noradrenergic and cholinergic systems, as well as the types and distributions of relevant receptors for each system. Previous work characterizing the direct and indirect interaction between these two systems is discussed, especially in the context of higher order cognitive functions such as attention, learning, and the decision-making process. Though a substantial amount of work has been done to characterize the role of each neuromodulator, a cohesive understanding of the region-specific cooperation of these two systems is not yet fully realized. For the field to progress, new experiments will need to be conducted that capitalize on the modular subdivisions of the brain and systematically explore the role of norepinephrine and acetylcholine in each of these subunits and across the full range of receptors expressed in different cell types in these regions.more » « less
-
Abstract In this work, an organic‐inorganic hybrid crystal, violet‐crystal (VC), was used to etch the nickel foam (NF) to fabricate a self‐standing electrode for the water oxidation reaction. The efficacy of VC‐assisted etching manifests the promising electrochemical performance towards the oxygen evolution reaction (OER), requiring only ~356 and ~376 mV overpotentials to reach 50 and 100 mA cm−2, respectively. The OER activity improvement is attributed to the collectively exhaustive effects arising from the incorporation of various elements in the NF, and the enhancement of active site density. Furthermore, the self‐standing electrode is robust, exhibiting a stable OER activity after 4,000 cyclic voltammetry cycles, and ~50 h. The anodic transfer coefficients (αa) show that the first electron transfer step is the rate‐determining step on the surface of NF‐VCs‐1.0 (NF etched by 1 g of VCs) electrode, while the chemical step involving dissociation following the first electron transfer step is identified as the rate‐limiting step in other electrodes. The lowest Tafel slope value observed in the NF‐VCs‐1.0 electrode indicates the high surface coverage of oxygen intermediates and more favorable OER reaction kinetics, as confirmed by high interfacial chemical capacitance and low charge transport/interfacial resistance. This work demonstrates the importance of VCs‐assisted etching of NF to activate the OER, and the ability to predict reaction kinetics and rate‐limiting step based onαavalues, which will open new avenues to identify advanced electrocatalysts for the water oxidation reaction.more » « less
-
Abstract The dry process is a promising fabrication method for all‐solid‐state batteries (ASSBs) to eliminate energy‐intense drying and solvent recovery steps and to prevent degradation of solid‐state electrolytes (SSEs) in the wet process. While previous studies have utilized the dry process to enable thin SSE films, systematic studies on their fabrication, physical and electrochemical properties, and electrochemical performance are unprecedented. Here, different fabrication parameters are studied to understand polytetrafluoroethylene (PTFE) binder fibrillation and its impact on the physio‐electrochemical properties of SSE films, as well as the cycling stability of ASSBs resulting from such SSEs. A counter‐balancing relation between the physio‐electrochemical properties and cycling stability is observed, which is due to the propagating behavior of PTFE reduction (both chemically and electrochemically) through the fibrillation network, resulting in cell failure from current leakage and ion blockage. By controlling PTFE fibrillation, a bilayer configuration of SSE film to enable physio‐electrochemically durable SSE film for both good cycling stability and charge storage capability of ASSBs is demonstrated.more » « less
An official website of the United States government
